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Analysis of onset of Soret-driven convection by the energy method
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The Soret-driven instability in binary mixture heated from above is analyzed by using the energy method
and its modification. The horizontal fluid layer placed between two plates is in initially quiescent state but the
Soret diffusion can induce buoyancy-driven convection in the case of the negative Soret coefficient. For the
case of highly unstable density stratification the buoyancy-driven motion sets in during the transient diffusion
stage. Here the stability limits which are related to the onset time of instabilities are presented as a function of
the Rayleigh number Ra, the Lewis number Le, and the separation ratio . The present stability analysis
predicts that the onset time of convective instability decreases with increasing buoyancy parameter
Ra(Le/)~". The relaxed energy method shows that the first visible motion can be detected from a certain time
five times larger than the predicted onset time and the critical wave number is not zero but a finite value.
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INTRODUCTION

Buoyancy-driven convection due to the thermal diffusion
in multicomponent systems such as polymer solution, poly-
mer blend, ethanol-water mixture, or various gas mixtures
has attracted many researchers’ interests since it shows quite
different characteristics from those in pure fluids [1-4]. Re-
cently the onset of Soret-driven instability (SDI) in
nanoparticles-suspension systems has been studied inten-
sively [5-9].

If suspension of nanoparticles is under consideration, the
unexpected spatiotemporal properties of convection are ob-
served due to the extremely small particle mobility. This is
usually reflected by the small Lewis number Le(=D./«)
<107*, where D is the mass diffusion coefficient and « is
the thermal diffusivity. The separation ratio ¥{=(B./Br)
X(Dy/D¢)] is used as the measure of the relative importance
of the Soret effect with respect to weak solutal diffusion and
it represents the coupling between the temperature and con-
centration fields [5-9]. Here B[=p~'(dp/dC)] is the solutal
expansion coefficient, B{=—p~!(dp/JT)] the thermal one, Dy
the thermal diffusion (Soret) coefficient, p density, C concen-
tration, and T temperature. For binary mixture of negative ¢,
the Soret effect can induce buoyancy-driven motion even in
initially uniform concentration and thermally stable configu-
ration. For the fully developed linear fields of temperature
and concentration the critical Rayleigh number to represent
the onset of SDI is given by the critical Rayleigh number
Ra,=720(Le/ ), considering the relative time scale of mass
diffusion with respect to thermal diffusion [10]. Recently
Shevtsova er al. [11] analyzed the onset of SDI by employing
the computational fluid dynamics (CFD) technique.

In the present study the onset of SDI in the horizontal
fluid layer heated from above, with large buoyancy
forces driven by the Soret effect, ie., Ra<<0 but
Ra[=Ra(Le/)"']>720, is investigated by using the con-
ventional energy method and its modification. The energy
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method has a long history [12] and it is widely used in the
hydrodynamic stability analysis [13]. This method gives the
necessary condition of instability, i.e., a lower Ra, bound. It
does not require initial conditions for the disturbances, which
are not known, and therefore, we concentrate this method.
We relax the conventional strong stability criteria by intro-
ducing the relaxed stability criterion into the energy method.
For the present problem the new stability equations are de-
rived. The resulting predictions are compared with previous
predictions based on the linear stability theory and also avail-
able experimental results.

THEORETICAL ANALYSIS
Governing equations and base system

The problem considered here is a horizontal fluid layer
confined between two rigid plates separated by the vertical
distance d. The fluid layer of binary mixture, of which ¢ has
a large negative value, is initially quiescent at a constant
concentration C; and a constant temperature 7;. For time ¢
=( the fluid layer is heated suddenly from above with a
constant temperature 7,, that is, the Rayleigh number
Ra[=gB(T;~T,)d*/(av)] has a negative value. For a high
Ra,, buoyancy-driven convection will set in at a certain time
and the governing equations of motion, temperature, and
concentration fields are expressed by employing the Bouss-
inesq approximation [14]

V.-U=0, (1)

{£+U-V}U=—1VP+ vW2U + g(B,;T- B.C), (2)

ot p
J 2
—+U-V(T=aV-T, (3)
ot
J 2 2

with the following initial and boundary conditions:
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U:(), T= Ti’ C: Ci att:O, (Sa)

aC or
U=0, T=Ti, DC_+DT_=O atZ=O, (5b)
74 oz

aC aTr
U=0, T= Tu, DC_+DT_= at Z= d, (SC)

oz az
where U[=(U,V,W)] is the velocity vector, P the dynamic
pressure, v the kinematic viscosity, and g the gravitational
acceleration vector. The present system is thermally stable
due to the heating from above, i.e., 7,>7; and therefore
Ra<0.

Under the stable temperature gradient, for the case of
D;=0, i.e., Rag=¢=0, the concentration field does not
change and keeps the initial concentration C=C; from Eqs.
(1)—(5). Therefore, the system is unconditionally stable when
there is no Soret effect. However, for the case of D;<<0, i.e.,
<0, the stable temperature gradient makes the solute move
upward and the system be potentially unstable. In the present
study the system of <0, Ra<<0, and Le— 0 will be con-
sidered. For another extreme case of large positive ¢ and
small Le, binary mixtures such as ferrofluids heated from
below with Ra>0 was already analyzed by Ryskin et al
[10].

For the present system of /<0, Ra<<0, and Le — 0, if the
temperature gradient is small, i.e., Ra; <720, the layer is not
only initially stable but also in its equilibrium state. How-
ever, for the case of Ra,>720, while the layer is initially
stable, it is unstable for a fully developed diffusive concen-
tration profile, as summarized by Ryskin er al. [10]. There-
fore, the convective motion occurs during the transient dif-
fusion process and the related stability problem becomes
transient. Its critical time 7. to mark the onset of buoyancy-
driven motion is not fully understood. For this transient sta-
bility analysis we define a set of dimensionless variables 7, z,
6o[=(T;,—T)/AT] by using the scale of time d*/D, length d,
and temperature AT(=T;—T,). The heat conduction equation
can be solved by using the separation of variables

RV ( n’m )
sin(nmz)exp| — 7).
Le

fh=2+22 (6)
n=1

When the Lewis number is very small, e.g., Le= 10~ for
nanoparticles suspension systems, the basic temperature field
can be approximated by

0y=z for 7=Le. (7)

This means that the establishment of the conductive heat
profile during the time 0 < 7<<Le 0O will not be considered in
the present study (see Fig. 1). In the experimental system of
the nanopartles suspension in water (Cerbino er al. [6]),
where Le=1.48X 107, )=-3.41, and Sc=3.7X10% the
conduction time f,4(=d*/ @) is much shorter than the onset
time of SDI ¢,. For the case of Fig. 1 of Cerbino et al. [6],
where Rs=8.33X10° and d=0.98 mm, f,,,q=6.5 s, and ¢,
=390 s. For another experimental case of ethanol-water mix-
ture system of La Porata and Surko [3], where Le=7.75
X 1073, y=—=0.24, Sc=1.16 X 10> and d=4 mm, t.,,q=124 s,
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FIG. 1. Schematic diagram of the basic system considered here.
The fully developed, linear temperature profile is assumed for 7
>Le in the present case of Le—0.

and ,=1600 s for Ra,=1.6 X 10°. From these experimental
data, the transient thermal conduction effect might be negli-
gible for the limiting case of Le — 0. Therefore, as shown by
Ryskin and Muller [10] and Ryskin and Pleiner [9], the ap-
propriate initial state to investigate the onset of convective
instability is a state where the temperature profile is fully
developed and linear, as given by Eq. (7) while concentration
just starts to build up the layers near the boundaries. For the
limiting case of Le— 0 and <0, based on the above tem-
perature distribution, the dimensionless concentration field is
given by [14]

| —]
co(r,z) =2~ 5 +2 P cos N,z exp(— )\,217-) (8)
n=1 \n
or
I . . . . n+1
co(mz) = V4712 | - 1erfc(% + Lr) - 1erf¢(7 _ L/_)
n=0 NT 2T A
. n+1/2  z . n+172  z
+ierfc = — —= | +ierfc —+—=(
N7 2NT v 2V7
)

where ¢y=D(C-C))/(jsd), js=D7AT/d, \,=(2n-1)7 and
ierfc is the integral of the complementary error function. For
the case of negative ¢ the Soret flux jg has a positive value.
The above concentration profiles satisfy the impermeable
conditions for concentration at both boundaries. Based on
these temperature and concentration fields given by Egs. (7)
and (9), the schematic diagram of the basic system of pure
diffusion is shown in Fig. 1. For the deep-pool system of
small H{Le<7<0.01) and ierfc()=0, the basic concentra-
tion field is approximated by

— z
c =—\’47'ierfc<—) for z=<0.5. (10)
0 2\/;'

Here ¢((7,0) =—\47/ 4. Over a certain time interval the con-
centration gradient, which is propagating from both bound-
aries, does not feel the presence of the other one. Based on
this, Shliomis and Souhar [5] assumed the concentration gra-
dient as
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17
ﬂ=erfc<i¢). (11)
oz 2NT

Stability equations

Consider the following velocity, pressure, temperature,
and concentration perturbations U;=U-U,, P{=P-P,, T;
=T-T,, and C;=C-C,. Introducing these perturbations into
Egs. (1)—(4), we can obtain the following dimensionless
equations:

V'U]:O, (12)

1) 0
_{_ +u;- V}ul =—Vp1 + Vzul + kRaS(Cl + ¢01),

Sc | dr
(13)
a0 1 a0
—1=—V201—W1—0—u1-V01, (14)
Jr  Le 0z
J J
ﬂ=V2(C1_01)_M/’lﬂ_ul'VC] (15)
aT 0z
with the following boundary conditions:
(?C]
u1=01=é’—=0atz=0andz=1, (16)
Z

where Sc(=v/D) is the Schmidt number, velocity scale is
Dc/d, and the subscripts 0 and 1 represent the base and the
perturbation quantities, respectively. Here we retain the non-
linear convective term of u,-Vc¢;, which are usually ne-
glected in the linear stability theory.

For the limiting case of Le— 0, from Egs. (14) and (16),
the temperature perturbation has a trivial solution of 6;=0
and therefore the thermal effect can be negligible. For mix-
tures of large Sc the inertia terms having 1/Sc in Eq. (13) are
also negligible. In this case the above perturbation equations
reduce to

0=-Vp,+ V?u, +kRay, (17)
dc dc
—I—Vzcl—wl—o—u1~VC1, (18)
aT 9z

with the following boundary conditions:

501
lll=—=0
0z

atz=0 andz=1. (19)

Now, we will follow the standard procedure of the con-
ventional energy method [13]. By multiplying Eq. (17) by u,
and Eq. (18) by ¢, and integrating them over the system
volume (), for the limiting case of Le — 0, the kinetic energy
and the buoyancy energy relations can be obtained as

1
O=—f ul-V(p1+5u%)dQ+f u, - V’u,dQ
Q Q

+Rasf cywdQ, (20)
Q
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l(?c% )
- dQ) =—- CII.IIVCldQ+ C]V C]dQ
29
Q< o7 Q Q

O
-J wie1 =240, 1)
Q oz

Using the divergence theorem, the following relations are
obtained:

0=—(V-u, )+ R(wc}), (22)
l&(|ci|2) =—(|Ve/P)-R{ w c'% (23)
2 ar ! . dz |’

where R=1Ra,, c;=VRaycy, and {(-+))=Jq(--)dQ. In the
above derivation, the boundary conditions (19) and the peri-
odicity in the x and y direction are used.

In the present system the dimensionless energy identity is
defined by adding Egs. (22) and (23) with the coupling con-
stant y>0:

E(7) =3 el (24)

This is connected to the kinetic energy [see Egs. (13), (20),
(22), and (23)], which is neglected for very large Sc. Now,
the following equation is derived from Egs. (22) and (23):

dE

00,
i K|Ve, ) - 'yR<w1(9—;cl> +R(wic) =V -uy)?),

(25)
where the primes have been dropped. By setting ¢, = \s‘;c] the

above equation is expressed as

dE ¢ dcy .
i (Ve +|V-wy?) +R<W1,_1— —W1_0\7C1>,
T \y oz

(26)
where E =%<CAI>2. The above relation can be represented as
dE 1
—=RI-D=-D|1-—=R/, (27)
dr D
where
c dc
I=<W1_;_W1_OV/;’01>, (28)
\r”y C?Z
D={|Ve > +|V-u*), (29)

where the hats have been dropped. Under the strong instabil-
ity concept of dE/d7=0, the onset time 7, is defined as the
critical time. In other words, for a given 7 the strong stability
limit R, is determined as

i:max(é). (30)

From the procedure given in Straughan [13], under the nor-
mal mode analysis, this maximum problem can be reduced
as the following Euler-Lagrange equations:
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&P 2 1 1 dc
g 2 _ 2 [0 2
<§Z2_a Wl—_st —oVNr, Jaten (31)

Y <
s 1 (1 e
(—2—a2 cr= R == \y=2wi, (32)
0z 2 \y (4
with the following boundary conditions:
(9W1 (96'1
wi=——=——=0atz=0and 1, (33)
0z 0z

where a is the horizontal wave number. The strong stability
conditions are independent of the Schmidt number. The
strong stability limit Ra,(7,) is given by

V’E = max min R;. (34)
y a
Now, the strong stability limits are relaxed. Under the
relaxed stability concept the critical time 7, is determined
according to the following criterion [15]:

1dE 1 dE,
———=———atT=17, (35)
Edr E,dr

where E, is the basic energy identity, i.e., Ey=(c3)/2, since
u,=0. For the limiting case of 7— 0 [based on the concen-

tration profile (10), (1/Ey)(dEy/d7)=3/27] the relaxed en-
ergy identity becomes

3E
— =RI-D for 7— 0. (36)
27

The relaxed stability limit is obtained as

1 [ I
— =1max

———— | for 7= 0. (37)
R D +3E/2T

r

Under the normal mode analysis, for the limiting case of 7
— 0, the Euler-Lagrange equations for the relaxed stability
limit are obtained similar to Egs. (31) and (32):

& 2 1 1 E
<_2‘a2 wy=-_R, —r—\@ﬂ a’c;,  (38)
0z 2 \J”y Jz

(az 2) Lo (L _ o 3 (39)
—-—-a’|ci=—= = —N\NYyY— |w;+—cy.
97 1= 5% Jy \)’az 1T A

With the boundary conditions (32) the relaxed stability limit
Rs(7,) is given by

\’/F% = max min R,. (40)
y a
For systems of 7>0.01, a similar approach can be applied
and the terms containing 3/47 should be slightly modified.
According to the basic concentration profile (8) dE/dT can
be written as
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dE _ (L%) £
d'T - EO dT
> (16/A2)exp(— N2o{1 — exp(— \27)}
n=1

= E.

o0

1/12 -2, (8/\Hexp(- \2D{2 — exp(- \27)}

n=1

(41)

For the limiting case of 7— 0, from the above equation we
obtain (1/Ey)(dEy/dt)=3/27. For another limiting case of
77—, (dEy,/d7)=0 and the above stability equations (38)
and (39) degenerate into the strong stability formulation [see
Egs. (31) and (32)]. Therefore, the present stability equations
can cover the whole time region without any assumptions.

Solution method

The stability equations (38) and (39) were solved by em-
ploying the outward shooting scheme. In order to integrate
them a trial value of the eigenvalue R, and the boundary
conditions #w,/dz* and ¢, at z=0 are assumed properly for
a given a and y. Since the boundary conditions (33) are all
homogeneous, the value of ¢*w,/dz> at z=0 can be assigned
arbitrarily. This procedure is based on the outward shooting
method in which the boundary value problem is transformed
into the initial value problem. The trial values, together with
the three known conditions at the lower boundary, give all
the information to make numerical integration smoothly.

The integration based on the fourth-order Runge-Kutta
method is performed from z=0 to z=1. By using the
Newton-Raphson iteration the trial values of R,, &Bwl/ 9z,
and ¢, are corrected until the stability equations satisfy the
upper boundary conditions within the relative tolerance of
1071, For the strong stability limits the solution procedure is
almost the same as above.

RESULTS AND DISCUSSIONS

For Le — 0, the present stability criteria obtained from the
energy method, strong and relaxed, are shown in Fig. 2 and
they are also compared with the available predictions. They
all show that for large 7 the long wave instability of a=0 is
the preferred mode and the critical condition is Ra;=720
[10]. The relaxed stability limit yields the critical time:

7',=3.16Ra;”2 as Ra; — o, (42)

of which the constant is a little smaller than 5.57 from the
propagation theory of Kim et al. [16]. Those from the strong
stability limit and the frozen-time model are much smaller.

Very recently, Shevtsova er al. [11] conducted three-
dimensional, time-dependent CFD analysis on the onset of
SDI. They simulated the Soret-driven motion for the system
of water (90%)-isopropanol (10%), where Le=6.7X 1073
and ¥=-0.4 with the Prandtl number of 10.85. Their calcu-
lation condition is much closer to La Porta and Surko’s [3]
experimental one for the ethanol-water system than the
present system of Le— 0. Their stability criterion is

036302-4



ANALYSIS OF ONSET OF SORET-DRIVEN CONVECTION ...

10 3 AR T MR | T T
EN energy method
10° _ relaxed stability ]
E S strong stability
; linear stability theory .
100 ¢ : propagation theory [16] 3
F L frozen-time model [16] ]
10° 3
o
=4
10° £ E
10* . 3
\\\ RN
3 Tl
10" ¢ 720 = 3
102 wul wl wl il il m
10" 10° 10° 10" 10" 10' 10°

FIG. 2. Comparison of the predicted critical times for
Le—0.

.= fﬂ =1.05Ra;*** for Ra, > 3 X 10%, (43)
D

where ¢, is the peak time where the vertical velocity attains
the maximal value and 7j,(=d/ D) is the diffusion time. Even
though this criterion is quite lower than the present stability
limit (42) for the present limiting case of Le — 0, it shows the
same scaling relation as the present prediction of 7,
~Ra "2,

The present predictions are compared with available ex-
perimental data in Fig. 3. By using the shadowgraph method
Cerbino et al. [6,7] and Mazzoni et al. [17] visualized the
Soret-driven convective motion in a colloidal suspension of
22 nm diameter silica particles (LUDOX®) dispersed in wa-
ter. Their experimental condition is that of Le=1.48 X 1074,
=-3.41, and Sc=3.7 X 10*. They obtained the latency time
7 and the peak time 7, as the characteristic times when the

10 bl 5 A LA IERLEMLAALLL IR IR LA IR B
experiments E
, ® ¢ (Cerbino etal.[6,7])
100 ¢ Ot (Mazzonietal[17]) 3
At (Mazzoni et al.[17]) 3
10"k o 0 Ward and Le Blanc [18]
102k 720

N

10”  theoretical predictions

present t,
4 present 5t
10 _ ******* present T 3
[ ® Ryskinand Pleiner [9]
100 100 10* 100 10° 100 10° 10" 10 10"
Ra

FIG. 3. Comparison of the critical times for Le— 0 with avail-
able experimental data for the nanopartles suspension system of
Le=1.48 X 107, y=-3.41, and Sc=3.7 X 10*.
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FIG. 4. Comparison of the predicted critical wave numbers for
Le—0.

variance of the intensity of images starts to grow and it
shows the maximum value, respectively. Based on their ex-
perimental results, they suggested the scaling relation of 7
~Ra;0'52, which is quite close to that of Eq. (42). They also
measured the oscillation period 7. as a function of Ra,. The
experimental data of Ward and Le Blanc [18] are those for
the Rayleigh-Bénard convection in the electrochemical redox
system. Their stability equations and boundary conditions are
identical to the present ones [19]. As shown in the figure, our
7, value predicts the experimental trend and the 57, values
bound the experimental 7 values quite well. It seems that the
instability, which sets in at 7=7,, grows until first detected
experimentally at 7=57,. For the nanoparticles suspension
system of Le=7X 1073, =-10, and Sc=107, Ryskin and
Pleiner [9] analyzed the similar problem numerically using
the conduction time scale. They introduced an arbitrary small
initial disturbance and solved the stability equation. The first
overshoot time given in Fig. 6 of Ryskin and Pleiner corre-
sponds to Ra,=1.86X10'" and 7=2.1X1073. As shown in
Fig. 3, their overshoot time is far from the present critical
time and the experimental data. It is mentioned that the over-
shoot time depends on the initial magnitude of the distur-
bances and pattern [15].

It is well known that the conventional energy method can-
not give the information on the critical wave number. For the
present system this model yields the critical wave number of
a,.=0 for the whole range of Ra,. However, its modification
yields the finite wave number at the onset of convection, as
shown in Fig. 4. Even though the experimental critical wave
number is not reported in the [6] experiment of Cerbino er
al., the finite mode rather than long-wave mode of convec-
tive motion is preferred. In this viewpoint the relaxed energy
method is better than the conventional one. It is mentioned
that more refined work should be pursued.

CONCLUSIONS

The critical condition to mark the onset of convective
motion driven by the Soret diffusion in an initially quiescent,
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horizontal fluid layer heated from above has been analyzed
by using the energy method and its modification. Here the
stability equations are derived based on the relaxed energy
method and its critical time 7, to mark the onset of instability
is obtained. It seems that for the present system manifest
convection is first detected at 7=57, in comparison with
available experimental data and for 7<57, velocity distur-
bances are too weak to be detected experimentally. The
present results show that the relaxed energy method can be
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applied reasonably well to the analysis of onset of SDI in
binary systems having a negative separation ratio and very
small solute diffusivity.
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